Maximal inequalities for normed double sums of random elements in martingale type p Banach spaces with applications to degenerate mean convergence of the maximum of normed sums
Tác giả: Andrew Rosalsky and Lê Văn Thành
Numerical Algebra, Control and Optimization
Quyển: 14 Trang: 714-724
Năm xuất bản: 11/2024
Tóm tắt
In this correspondence, we prove new maximal inequalities for normed double sums of random elements taking values in a real separable martingale type p Banach space. The result is then applied to establish mean convergence theorems for the maximum of normed and suitably centered double sums of Banach space-valued random elements.
Từ khóa
Maximal inequality, Array of Banach space valued random elements, Martingale type p Banach space, Mean convergence of order q, Double sums.