page loader
Improved performance for antenna based on a combination of fractal geometry with CSRR
Tác giả: Thanh Nghia Cao, Thi Quynh Hoa Nguyen, Thi Nha Nguyen, Ngoc Hieu Nguyen, Dac Tuyen Le
142    0
Journal of Information and Telecommunication
Quyển: 7/2     Trang: 144-154
Năm xuất bản: 2/2023
Tóm tắt
In this paper, an antenna design method operating at 3.5 GHz for 5G system is presented to improve its performance. The antenna is designed using fractal geometry combined with an imperfectly structured ground plane. In which, the radiation surface has the form of a Minkowski island fractal geometry, and the removed part of the ground is a complementary split ring resonator unit cell. In this design, the substrate material is FR4-epoxy microwave laminates with dielectric constant ϵ = 4.4, loss tangent (tan δ) of 0.02, and h = 1.6 mm thickness used to design the antennas. HFSS software is used in the simulation with the feeding method with a microstrip line. The proposed antenna has a significant performance increase compared to the original microstrip antenna such as reduced about 56% reduction in total size, enhanced 207% bandwidth, increased peak gain to 4.66 dB, and improved radiated efficiency to 89.3%. The physical model of the antenna has been fabricated and measured to verify the correctness of the design.
Từ khóa
metamaterials, fractal antenna, microstrip antenna, 5G application
Cùng tác giả
Xây dựng nội dung và tổ chức giảng dạy học phần Tín hiệu và hệ thốngBáo khoa họcTổng hợp và hoạt tính quang xúc tác của dây nano TiO2 pha tạp CoA MINIATURIZATION OF MICROSTRIP ANTENNA USING NEGATIVE PERMITIVITY METAMATERIAL BASED ON CSRR-LOADED GROUNDFOR WLAN APPLICATIONSStudy on negative permittivity metamaterial based on CSRR structure and its application in improving characteristics of microstrip antennaUltra-broadband, polarization insensitivity and wide-angle metamaterial absorber for visible spectrumNghiên cứu bộ hấp thụ sóng điện từ siêu vật liệu dải rộng và không phụ thuộc phân cựcNumerical Study of an Ultrabroadband, Wide-Angle, Polarization-Insensitivity Metamaterial Absorber in the Visible Region Magnetic, specific heat and electrical transport properties of oxygendeficient nanosized rutile TiO2−δMetamaterial based conical frustum array nanostructure for wide-angle and polarization-insensitive absorber in the visible regionStudy on negative permittivity metamaterial based on CSRR structure and its application in improving performances of MIMO antennaFacile design of ultrathin single layer broadband metamaterial absorber for C-band appicationsSolvothermal synthesis and photocatalytic activity of Ni-doped FeS2 nanoparticlesDefect induced co-polarization broadband metamaterial absorberSimple Design of Co-polarization broadband metamaterial absorber for C-band applicationsNumerical study of an efficient broadband metamaterial absorber in visible light regionFacile design of an ultra-thin broadband metamaterial absorber for C-band applicationsNumerical study of a broadband metamaterial absorber using a single split circle ring and lumped resistors for X-band applicationsA Comparasion of Photocatalytic Activity Between FeS2, Ni-Doped FeS2 Nanoparticles and Un-Doped FeS2/rGO CompositeA Comparasion of Photocatalytic Activity Between FeS2, Ni-Doped FeS2 Nanoparticles and Un-Doped FeS2/rGO CompositeSimple design of efficient broadband multifunctional polarization converter for X-band applicationsSimple Design of a Wideband and Wide-Angle Insensitive Metamaterial Absorber Using Lumped Resistors for X- and Ku-BandsSimple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applicationsNumerical Study of an Ultra-Broadband and Wide-Angle Insensitive Perfect Metamaterial Absorber in the UV–NIR RegionNumerical design of a high efficiency and ultra-broadband terahertz cross-polarization converterLightweight, Ultra‐wideband and Polarization Insensitive Metamaterial Absorber using Multilayer Dielectric Structure for C‐ and X‐band ApplicationsPolarization-insensitive dual-band terahertz metamaterial absorber based on asymmetric arrangement of two rectangular-shaped resonatorsReconfigurable broadband metasurfaces with nearly perfect absorption and high efficiency polarization conversion in THz rangeRelationship between morphological and physical properties in nanostructured CuMnO2Millimeter-wave broadband MIMO antenna using metasurfaces for 5G cellular networks