page loader
A regularization method for Caputo fractional derivatives in the Banach space L∞[0, T]
Tác giả: Nguyen Van Duc, Nguyen Thi Phong
161    62
Numerical Algorithms
Quyển: 95     Trang: 1033-1053
Năm xuất bản: 7/2023
Tóm tắt
This work is dedicated to the investigation of aregularizationmethodfor the problem of determining Caputo fractional derivatives of a function in the Banach space L∞[0, T]. This regularization method is based on the approximation of the first-order derivative of the function by the solution of a well-posed problem depending on a regularization parameter. We then discuss the Hölder type stability results for the method according to two choice rules for the regularization parameter, which are an a priori parameter choice rule and an a posteriori parameter choice rule. Some numerical examples are provided
Từ khóa
Caputo fractional derivative · Ill-posed problems · Regularization · A priori parameter choice rule · A posteriori parameter choice rules · Error estimates
Cùng tác giả
A non-local boundary value problem method for semi-linear parabolic equations backward in time.Đánh giá ổn định cho các phương trình kiểu Burgers ngược thời gianA mollification method for semi-linear heat equations backward in time in the Banach space Lp(R)Giáo trình Giải tích (Tập 1)Stability Results for Semi-linear Parabolic Equations Backward in TimeAn a posteriori mollifcation method for the heat equation backward in timeBackward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz sourceGiáo trình Giải tích 2Một phương pháp chỉnh hóa cho phương trình parabolic với hệ số phụ thuộc thời gianCác kết quả ổn định cho phương trình parabolic bậc phân ngược thời gianA Mollification Method for Backward Time-Fractional Heat EquationIdentifying an unknown source term in a time-space fractional parabolic equationRegularization of backward time-fractional parabolic equations by Sobolev-type equationsStability results for weak solutions to backward one-dimensional semi-linear parabolic equations with locally Lipschitz sourceIdentifying an unknown source term in a heat equation with time-dependent coefficientsStability results for backward heat equations with time-dependent coefficient in the Banach space Lp(R )Identifying an unknown source term of a parabolic equation in Banach spacesHình học FractalGiáo trình Độ đo và tích phânThe quasi-reversibility method for an inverse source problem for time-space fractional parabolic equationsA coefficient identification problem for a system of advection-reaction equations in water quality modelingRegularization of backward parabolic equations in Banach spaces by generalized Sobolev equations