Mapping of soil erosion susceptibility using advance machine learning models at Nghe An, Vietnam
Authors: Nguyen Thi Thuy Ha, Nguyen Quyet Chien, Tran Thi Tuyen, Astarkhanova Tamara Sarzhanovna, Vu Van Luong, Dau Khac Tai, Nguyen Thi Trang Thanh, Nguyen Ngoc Hieu, Pham Huong Giang, Nguyen Dam Duc, Indra, Pham Binh
Journal hydroinformatics
: :
Publishing year: 11/2023
Soil Erosion Susceptibility Mapping (SESM) is one of the practical approaches for managing and mitigating soil erosion. This study applied four Machine Learning (ML) models namely the Multilayer Perceptron (MLP) classifier, AdaBoost, Ridge classifier, and Gradient Boosting classifier to perform SESM in a region of Nghe An province, Vietnam. The development of these models incorporated seven factors influencing soil erosion: slope degree, slope aspect, curvature, elevation, Normalized Difference Vegetation Index (NDVI), rainfall, and soil type. These factors were determined based on 685 identified soil erosion locations. According to SHapley Additive exPlanations (SHAP) analysis, soil type emerged as the most significant factor influencing soil erosion. Among all the developed models, the Gradient Boosting classifier demonstrated the highest prediction power, followed by the MLP classifier, Ridge classifier, and AdaBoost, respectively. Therefore, the Gradient Boosting classifier is recommended for accurate SESM in other regions too, taking into account the local geo environmental factors.
gradient boosting classifier, machine learning, grid search, soil erosion, Vietnam