page loader
A new empirical formula for prediction of the axial compression capacity of CCFT columns
Tác giả: Viet-Linh Tran, Duc-Kien Thai, Seung-Eock Kim
242    0
Steel and Composite Structures
Quyển: 33     Trang: 181-194
Năm xuất bản: 10/2019
Tóm tắt
This paper presents an efficient approach to generate a new empirical formula to predict the axial compression capacity (ACC) of circular concrete-filled tube (CCFT) columns using the artificial neural network (ANN). A total of 258 test results extracted from the literature were used to develop the ANN models. The ANN model having the highest correlation coefficient (R) and the lowest mean square error (MSE) was determined as the best model. Stability analysis, sensitivity analysis, and a parametric study were carried out to estimate the stability of the ANN model and to investigate the main contributing factors on the ACC of CCFT columns. Stability analysis revealed that the ANN model was more stable than several existing formulae. Whereas, the sensitivity analysis and parametric study showed that the outer diameter of the steel tube was the most sensitive parameter. Additionally, using the validated ANN model, a new empirical formula was derived for predicting the ACC of CCFT columns. Obviously, a higher accuracy of the proposed empirical formula was achieved compared to the existing formulae.
Từ khóa
artificial neural network; axial compression capacity; circular concrete-filled tube; empirical formula
Cùng tác giả
Ensemble machine learning-based models for estimating the transfer length of strands in PSC beamsInnovative formulas for reinforcing bar bonding failure stress of tension lap splice using ANN and TLBOPrediction of the ultimate axial load of circular concrete-filled stainless steel tubular columns using machine learning approachesPatch loading resistance prediction of steel plate girders using a deep artificial neural network and an interior-point algorithmInvestigating the Behavior of Steel Flush Endplate Connections at Elevated Temperatures Using FEM and ANNNovel hybrid WOA-GBM model for patch loading resistance prediction of longitudinally stiffened steel plate girdersA new framework for damage detection of steel frames using burg autoregressive and stacked autoencoder-based deep neural networkRevealing the nonlinear behavior of steel flush endplate connections using ANN-based hybrid modelsBuckling resistance of axially loaded square concrete-filled double steel tubular columnsRapid prediction of the ultimate moment of flush endplate connections at elevated temperatures through an artificial neural networkComputational analysis of axially loaded thin-walled rectangular concrete-filled stainless steel tubular short columns incorporating local buckling effectsAxial compressive behavior of circular concrete-filled double steel tubular short columnsEvaluation of Seismic Site Amplification Using 1D Site Response Analyses at Ba Dinh Square Area, VietnamMachine Learning Models for Predicting Shear Strength and Identifying Failure Modes of Rectangular RC ColumnsApplication of ANN in predicting ACC of SCFST columnMoment-rotation-temperature model of semi-rigid cruciform flush endplate connection in firePractical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete