page loader
Patch loading resistance prediction of steel plate girders using a deep artificial neural network and an interior-point algorithm
Authors: Sy Hung Mai, Viet-Linh Tran, Duy-Duan Nguyen, Viet Tiep Nguyen, Duc-Kien Thai
290    0
Steel and Composite Structures
: 45     : 159-173
Publishing year: 10/2022
This paper proposes a hybrid machine-learning model, which is called DANN-IP, that combines a deep artificial neural network (DANN) and an interior-point (IP) algorithm in order to improve the prediction capacity on the patch loading resistance of steel plate girders. For this purpose, 394 steel plate girders that were subjected to patch loading were tested in order to construct the DANN-IP model. Firstly, several DANN models were developed in order to establish the relationship between the patch loading resistance and the web panel length, the web height, the web thickness, the flange width, the flange thickness, the applied load length, the web yield strength, and the flange yield strength of steel plate girders. Accordingly, the best DANN model was chosen based on three performance indices, which included the R^2, RMSE, and a20-index. The IP algorithm was then adopted to optimize the weights and biases of the DANN model in order to establish the hybrid DANN-IP model. The results obtained from the proposed DANN-IP model were compared with of the results from the DANN model and the existing empirical formulas. The comparison showed that the proposed DANN-IP model achieved the best accuracy with an R^2 of 0.996, an RMSE of 23.260 kN, and an a20-index of 0.891. Finally, a Graphical User Interface (GUI) tool was developed in order to effectively use the proposed DANN-IP model for practical applications.
artificial neural network; interior-point algorithm; machine learning; patch loading resistance; steel plate girder
Ensemble machine learning-based models for estimating the transfer length of strands in PSC beamsInnovative formulas for reinforcing bar bonding failure stress of tension lap splice using ANN and TLBOPrediction of the ultimate axial load of circular concrete-filled stainless steel tubular columns using machine learning approachesInvestigating the Behavior of Steel Flush Endplate Connections at Elevated Temperatures Using FEM and ANNNovel hybrid WOA-GBM model for patch loading resistance prediction of longitudinally stiffened steel plate girdersA new framework for damage detection of steel frames using burg autoregressive and stacked autoencoder-based deep neural networkRevealing the nonlinear behavior of steel flush endplate connections using ANN-based hybrid modelsBuckling resistance of axially loaded square concrete-filled double steel tubular columnsRapid prediction of the ultimate moment of flush endplate connections at elevated temperatures through an artificial neural networkComputational analysis of axially loaded thin-walled rectangular concrete-filled stainless steel tubular short columns incorporating local buckling effectsAxial compressive behavior of circular concrete-filled double steel tubular short columnsEvaluation of Seismic Site Amplification Using 1D Site Response Analyses at Ba Dinh Square Area, VietnamMachine Learning Models for Predicting Shear Strength and Identifying Failure Modes of Rectangular RC ColumnsApplication of ANN in predicting ACC of SCFST columnA new empirical formula for prediction of the axial compression capacity of CCFT columnsMoment-rotation-temperature model of semi-rigid cruciform flush endplate connection in firePractical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete