Relationship between morphological and physical properties in nanostructured CuMnO2
Tác giả: Thi Quynh Hoa Nguyen and Vinh HungTran
Physica E: Low-dimensional Systems and Nanostructures
Quyển: 144 Trang: 115418
Năm xuất bản: 8/2022
Tóm tắt
In this study, crednerite CuMnO2 nanostructures were prepared using a hydrothermal method at 100 °C with various amounts of NaOH mineralizator. Obtained nanostructured crednerite CuMnO2 with monoclinic structure (space group C2/m) exhibits two morphologies: nanobelts with lengths of 1–1.5 nm and thickness of 15–25 nm, and nanoplates with diameters of 50–70 nm. Comparative analyses of the prepared samples reveal a close relationship between morphological and physical properties of nanostructured CuMnO2. A low NaOH concentration promotes elongated crystal growth along the c-axis, resulting in nanobelt-shaped morphology. A strong base solution, on the other hand, promotes the formation of nanoplates. The different morphologies of nanostructured CuMnO2 have different spectroscopic and magnetic properties. The Raman active A1g mode at 637 cm−1 and a modified Curie-Weiss behavior characterize the nanobelt-shaped sample. This phase has two magnetic phase transitions: ferromagnetic at 9.2 K and antiferromagnetic at 42 K. The nanoplate-shaped sample, on the other hand, exhibits typical behavior as reported in the literature, namely the Raman active A1g mode at 688 cm−1 and low-dimensional magnetism with antiferromagnetic ordering below 62 K. The variation in magnetic properties is presumably due to partial oxidation of Cu1+/Cu2+ and Mn3+/Mn4+, as well as a change in Mn3+ spin states from low-spin in nanobelt-shaped samples to high-spin in nanoplate-shaped samples.
Từ khóa
Nanostructures