page loader
A Mollification Method for Backward Time-Fractional Heat Equation
Tác giả: Nguyen Van Duc, Pham Quy Muoi, Nguyen Van Thang
386    0
Acta Mathematica Vietnamica
Quyển: 45     Trang: 749-766
Năm xuất bản: 6/2020
Tóm tắt
In this paper, we study the ill-posed fractional backward heat equation ⎧⎨⎩ ∂γ u ∂t γ = Δu, x ∈ Rn, t ∈ (0, T ), u(x, T ) = ϕ(x), x ∈ Rn, where ϕ is unknown exact data and only noisy data ϕε with ϕε(·) − ϕ(·)L2(Rn)  ε is available. The problem is regularized by the well-posed mollified problem ⎧⎨⎩ ∂γ vν ∂t γ = Δvν, x ∈ Rn, t ∈ (0, T ), vν(x, T ) = Sν(ϕε(x)), x ∈ Rn, where ν > 0 and Sν(ϕε(x)), a mollification of ϕε defined by the convolution of ϕε(x) with Dirichlet kernel. The error estimates u(·, t) − vν(·, t)H l(Rn), 0 ≤ l are established for ν chosen a priori and a posteriori.
Từ khóa
Fractional equations backward in time · Mollification method · Dirichlet kernel · Log-convexity method
Cùng tác giả
A non-local boundary value problem method for semi-linear parabolic equations backward in time.Đánh giá ổn định cho các phương trình kiểu Burgers ngược thời gianA mollification method for semi-linear heat equations backward in time in the Banach space Lp(R)Giáo trình Giải tích (Tập 1)Stability Results for Semi-linear Parabolic Equations Backward in TimeAn a posteriori mollifcation method for the heat equation backward in timeBackward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz sourceGiáo trình Giải tích 2Một phương pháp chỉnh hóa cho phương trình parabolic với hệ số phụ thuộc thời gianCác kết quả ổn định cho phương trình parabolic bậc phân ngược thời gianIdentifying an unknown source term in a time-space fractional parabolic equationRegularization of backward time-fractional parabolic equations by Sobolev-type equationsStability results for weak solutions to backward one-dimensional semi-linear parabolic equations with locally Lipschitz sourceIdentifying an unknown source term in a heat equation with time-dependent coefficientsStability results for backward heat equations with time-dependent coefficient in the Banach space Lp(R )Identifying an unknown source term of a parabolic equation in Banach spacesHình học FractalGiáo trình Độ đo và tích phânThe quasi-reversibility method for an inverse source problem for time-space fractional parabolic equationsA coefficient identification problem for a system of advection-reaction equations in water quality modelingA regularization method for Caputo fractional derivatives in the Banach space L∞[0, T]Regularization of backward parabolic equations in Banach spaces by generalized Sobolev equations