page loader
Numerical Study of an Ultra-Broadband and Wide-Angle Insensitive Perfect Metamaterial Absorber in the UV–NIR Region
Authors: Thi Quynh Mai Nguyen, Thi Kim Thu Nguyen, Dac Tuyen Le, Chi Lam Truong, Dinh Lam Vu
449    0
Plasmonics
: Spinger     :
Publishing year: 3/2021
Developing a simple structure using low-cost material that enables both large-scale fabrication and broadband absorption response is highly desirable but very challenging for achieving high-performance metamaterial absorber. Herein, we propose and numerically investigate an ultra-broadband and wide-angle insensitive perfect metamaterial absorber in the ultraviolet to near-infrared (UV–NIR) region based on a simple metal–dielectric–metal structure. The proposed absorber structure consists of a periodic array of a tungsten hexagonal prism and a tungsten ground plane separated by a silicon dioxide dielectric substrate. The proposed absorber achieves an ultra-broadband absorption response in the range of 275–1000 nm with an absorptivity above 90% and a relative bandwidth of 106.8% at normal incidence, which covers from the UV to NIR region. The absorption efficiency is maintained with the figure of merit ηOBW higher than 90% for a wide incident angle up to 40o for transverse electric (TE) polarization and 65o for transverse magnetic (TM) polarization. The effects of structural parameters and different metallic materials on the absorption performance are presented. In addition, the physical mechanism is analyzed using the surface density and distributions of electric and magnetic fields that are attributed to both localized surface plasmon (LSP) and propagating surface plasmon (PSP) resonances. Owing to outstanding merits of simple structure, low cost, and high absorption performance, the designed absorber can be suitable for many applications in the UV–NIR spectrum such as thermal emitters and solar cells.
metamaterials, absorber
Solvothermal synthesis and photocatalytic activity of Co-doped TiO2 nanowiresA MINIATURIZATION OF MICROSTRIP ANTENNA USING NEGATIVE PERMITIVITY METAMATERIAL BASED ON CSRR-LOADED GROUNDFOR WLAN APPLICATIONSStudy on negative permittivity metamaterial based on CSRR structure and its application in improving characteristics of microstrip antennaUltra-broadband, polarization insensitivity and wide-angle metamaterial absorber for visible spectrumWide-angle and polarization-independent broadband microwave metamaterial absorberNumerical Study of an Ultrabroadband, Wide-Angle, Polarization-Insensitivity Metamaterial Absorber in the Visible Region Magnetic, specific heat and electrical transport properties of oxygendeficient nanosized rutile TiO2−δMetamaterial based conical frustum array nanostructure for wide-angle and polarization-insensitive absorber in the visible regionStudy on negative permittivity metamaterial based on CSRR structure and its application in improving performances of MIMO antennaFacile design of ultrathin single layer broadband metamaterial absorber for C-band appicationsSolvothermal synthesis and photocatalytic activity of Ni-doped FeS2 nanoparticlesDefect induced co-polarization broadband metamaterial absorberSimple Design of Co-polarization broadband metamaterial absorber for C-band applicationsNumerical study of an efficient broadband metamaterial absorber in visible light regionFacile design of an ultra-thin broadband metamaterial absorber for C-band applicationsNumerical study of a broadband metamaterial absorber using a single split circle ring and lumped resistors for X-band applicationsA Comparasion of Photocatalytic Activity Between FeS2, Ni-Doped FeS2 Nanoparticles and Un-Doped FeS2/rGO CompositeA Comparasion of Photocatalytic Activity Between FeS2, Ni-Doped FeS2 Nanoparticles and Un-Doped FeS2/rGO CompositeSimple design of efficient broadband multifunctional polarization converter for X-band applicationsSimple Design of a Wideband and Wide-Angle Insensitive Metamaterial Absorber Using Lumped Resistors for X- and Ku-BandsSimple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applicationsNumerical design of a high efficiency and ultra-broadband terahertz cross-polarization converterLightweight, Ultra‐wideband and Polarization Insensitive Metamaterial Absorber using Multilayer Dielectric Structure for C‐ and X‐band ApplicationsPolarization-insensitive dual-band terahertz metamaterial absorber based on asymmetric arrangement of two rectangular-shaped resonatorsReconfigurable broadband metasurfaces with nearly perfect absorption and high efficiency polarization conversion in THz rangeRelationship between morphological and physical properties in nanostructured CuMnO2Millimeter-wave broadband MIMO antenna using metasurfaces for 5G cellular networksImproved performance for antenna based on a combination of fractal geometry with CSRR